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Abstract: The aim of the present paper is to prove the existence of fixed point for any continuous mapping in Hausdorff spaces. 
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1. INTRODUCTION:  
In 1972, Brouwer [1] proved his well known fixed 
point theorem and next Schauder extended the 
validity of Brouwer’s fixed point theorem to normed 
linear spaces. Jungck [2],[3],[4] established some fixed 
and common fixed point theorems for continuous 
commuting mappings and gave criterion of the 
existence of fixed points for Cgf in compact metric 
spaces. Kakutani [5] generalized Brouwer’s fixed point 
theorem to multimaps and applied the result to prove 
a version of the Von Neumann minimax principle in 

nR . In this paper the results of Park[6] and, Singh and 
Rao [7] have also been extended. 

2. THEOREM: 
Let T be a continuous mapping of a Hausdorff space  

 

X into itself and let d:XX +R  be a continuous 
mapping such that for x, y X  and x y ,   satisfying 
for all n=0,1,2,………..; x,yX and , , 0.    Also 
0 ( ) 1      . 
Then T has a unique fixed point. 

 

 

PROOF: 
For any 0x X  we choose x X , we define a sequence { nx } 
of elements of X, such that 

n+1 nx Tx  , for n= 0,1,2,…. 
Now, 

n+1 n+2 n n+1d(x , x ) d(Tx ,Tx )  
From (1) we have 
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
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


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n n n n n n  { d(x ,Tx ) d(x ,Tx ) d(x ,Tx )}      

                        = n nd(x ,Tx ){ }     
Proceeding in the same manner, we get 

n+1
n n+1 0 1d(x , x ) { } d(x , x )    

 
as n n+1n

n , lim d(x , x ) 0


   

Hence,{ nx } converges to limit x (say).By completeness of X, the 

sequence { nx } is Cauchy. 

 
CLAIM:  
x is a fixed point of T. 
On the contrary if we assume that x Tx  , then 

n+1 n+1

n+1 n

d(x,Tx)  d(x,x ) d(x ,Tx)
            = d(x,x ) d(Tx ,Tx)

 
  

 
By  using (1), as n   
d(x,Tx)  0  
which is a contradiction. 
Hence proved , x is the fixed point. 
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3. CONCLUSION:  
In this paper we have proved a fixed point theorem for 
contractive mapping. This work can further be used 
for establishing results for generalized contractive and 
contractive type set valued mapping in other metric 
spaces. 
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